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1. INTRODUCTION

The concept of a sun, introduced by Efimov and Steckin in [10], has proved
to be rather important in the general theory of approximation in normed
linear spaces. (Recall that a subset V of a normed linear space X is called a sun
if, whenever Vo EO V is a best approximation to some x EO X, then Vo is also a best
approximation to every point on the ray from Vo through x.) We mention
only the following results:

(1) Every convex set is a sun and in smooth spaces every proximinal sun
is convex.

(2) In finite-dimensional normed linear spaces every Chebyshev set is a
sun (cf. Vlasov [14]).

But it is still an open problem whether a Chebyshev set in an arbitrary normed
linear space must be a sun. l In [6, 7] the concept of a Kolmogorov set was
introduced and it was observed that these sets are equivalent to suns. A
subset V of a normed linear space is called a Kolmogorov set if we have
V n K(vo ,1) = 0 for every Do in Pv(f). Here Pv(f) denotes the set of best
approximations ofjby means of the elements of V and K(vo ,1) denotes the
cone

K(vo ,j) := {v EX: Re x*(v - Do) > 0 for each x* EO ,s'U - vo)}

1 Dunham has recently given an example of a Chebyshev subset in C[O, 1] which is
not a sun.
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and !J U - vol denotes the set of extremal points of the set

{X* E' X*: x* I and x*U -- Co) = I Col;.

It is now known (cf. [4, 5] and the bibliography cited there) that much of the
linear or convex approximation theory can be extended to approximation by
elements of suns. In [5] there was given a characterization of suns by intrinsic
properties (i.e., without referring to an approximation problem) which is
rather complicated mainly due to the fact that for characterizing the suns
geometrically one uses not only the linear functionals in 6'«(- Vol but also
the functionals of the uEp-closed sets containing !Jtl- 1'0) (cf. [5] for details).
This is in contrast to earlier results [3,4] in the space CCT, H), i.e., the space
of all continuous mappings from a compact Hausdorff-space T into a
pre-Hilbert-space H and endowed with the Chebyshev-norm. In this special
case we have the following characterization (cf. [3,4]): A subset V of C( T, H)
is a sun if and only if for eachf in CCT, H) we have KU, 1'0) n V cjc implies
va is in the closure of the set

{v E' V: (f(t) - vo(t), v(t) - vo(t)) III v(t)- vO(t)!1 2 for every t in critU - va)}.

Here critU - va) denotes the set

{t E' T: i'/ - vA ,I = ilf(t) - vo(t)11H}'

In the special case H ~~ Ih£ this condition simplifies to: A subset V of CCT, Ih£)
is a sun if and only iffor eachfin CCT, Ih£) we have K(f, va) n V '/= 0 implies
va in the closure of the set

(1' E' V: (J(t) - vo(t)) . (v(t) - vo(t)) > 0 for every t in critU - va)}.

Taking in account the representation of the extremal functionals on C(T, H)
we see that for characterizing the suns in C(T, H) we need only the linear
functionals in rff(f - va). The condition valid in the special case C(T, Ih£) is
easy generalized to arbitrary normed linear spaces, namely,

(M)

It is easy to see that a sun in any normed linear space satisfies this condition
(M). There arises the question whether there are spaces other than CCT, Ih£)
where this condition (M) is always sufficient for a set V to be sun. We will call
such spaces MS-spaces. This problem was investigated first in [1]. It was
shown there that a geometric property of the unit sphere ("strong non
lunarity") was sufficient in order that every set with property (M) (such sets
are called moons in [1]) be a sun. In particular, the following spaces are
strongly nonlunar [1]:

(a) the space Co(T), T locally compact Hausdorff;
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(b) the space L I (S, r, }J-), (S, r, }J-) a a-finite measure space, if and only
if (S, r, }J-) is purely atomic;

(c) every finite-dimensional space whose unit-ball is a polyhedron.

It is not known whether every MS-space is strongly nonlunar.
In this work we continue the study begun in [1]. In §2 we first derive some

properties of suns. The main result in this part is the following:

THEOREM. Let V be a subset ofa real normed linear space X. Then we have
the implications "(i) =? (i + 1)", i = 1,2,3,

(I) V is a sun;

(2) the metric projection P v associated with V is ORL-continuous (see
definition below);

(3) for each f in X, every local minimum of the functional

f!>tCv) := Ilf - v II

on V is a global minimum;

(4) V is a moon.

In a MS-space all these conditions are obviously equivalent.

Here ORL-continuity refers to a generalization of the usual notion of lower
semi-continuity for set-valued mappings (see §2 for a precise definition).
Roughly speaking the metric projection is ORL-continuous at a given point
if it is lower semi-continuous as we approach the point from a certain
direction along prescribed lines. It should be remarked that the metric
projection associated with a sun in general is not continuous even in MS
spaces, as the results of Werner [15] show in the case of rational functions
in the space qa, b]. Perhaps surprising, then, is in MS-spaces suns are
characterized by the ORL-continuity of their metric projections. (It is not
known whether this result is valid in non-MS-spaces, e.g., in strictly convex
spaces.) An immediate consequence is the result that in a MS-space every
Chebyshev set with ORL-continuous metric projection is a sun. In §§3 and 4
we describe some constructions to get new MS-spaces from given ones. For
this purpose we define in §2 the notion of an (A)-space, which is (formally
at least) a strengthening of strong nonlunarity. We get the following theorems:

(I) If T is locally compact Hausdorff and X an (A)-space (with a certain
additional property), then the space Co(T, X) is an (A)-space.

(2) /f Xi' i in I, is afamiZv of(A)-spaces then the co-product is an (A)-space;
and the lcproduct is an (A)-space provided each Xi satisfies a certain additional
property.
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During the course of the proof of the first of these two theorems we obtain-
in collaboration with P. D. Morris-a representation of the extreme points
of the unit ball in the dual of Co(T, X). This generalizes a result of Singer [12],
who proved the special case when T is compact and X a Banach space using
more elaborate machinery.

2. GENERAL RESULTS

Throughout this paper, unless specified otherwise, X will denote a real
normed linear space, X* its dual space, B(X) = {x E X: II x II ~ I}, SeX) =

{x E X: Ii x II = I}, B(x, E) = {y E X: x - y < E}, and t(X) is the set of
extreme points of B(X). For each x E X, we denote the extreme points of the
peaking set for x by C(x). Thus

0'(x) = {x* E C(X*): x*(x) = II x II}.

By the a-topology on t'(X*), we will mean the relative weak* topology on
C(X*). For a given set V in X, the metric projection onto V is the set-valued
mapping P v defined on X by

Pv(x) = {v E V: Ii x - v = dist(x, V)}.

For an element Vo E V, the inverse of P v is given by

If Pv(x) oF 0 (respectively, Pv(x) is a singleton) for each x E X, V is called a
proximinal (respectively, Chebyshev) set.

All other undefined notation or terminology can be found in [9].

DEFINITION 2.1. X is called an (A)-space if for each nonzero x in X and
each a-open subset W~ C(x), there exists y in X such that

(1)

and

(2)

W~ 0"(y)

sup{x*(x): x* E C(X*)\C(y)} < Ii x II.

Remark. We note that condition (2) implies that C(y) ~ C(x). Also, by
Lemma 2 in [7], conditions (1) and (2) are equivalent to the existence of Z E X
such that

(1 ')

and

(2') sup{x*(x): x* E C(x*)\l(z)} < II x II,
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where i(z) denotes the a-interior of C(z). (This formulation of (A)-space will
be useful in the proof of Theorem 3.1.)

As an immediate consequence of the definition, we have (taking y equal
to x):

LEMMA 2.2. If, for each x EO SeX),

sup{x*(x): x* EO C(x*)\i&"(x)} < 1,

then X is an (A)-space.

COROLLARY 2.3. Allfinite-dimensional polyhedral spaces (i.e., those whose
unit balls are polygons) and Co (or more generally co(T)for any index set T) are
(A)-spaces.

Proof In both cases, for each x EO SeX), the set of all x* EO C(X*)\C(x)
such that t II x II < x*(x) is finite.

Remark. The condition of Lemma 2.2 is not necessary in general for
(A)-spaces. This can be easily verified by considering the (A)-space 11 and
noting that

sup{x*(x): x* EO C(X*)\i&"(x)} = I

for every x EO SUI) which has infinitely many nonzero components.
We recall the following definition. For any pair of points vo , x in X, we

define an open cone

K(vo , x) = {y EO X: x*(y - vo) < 0 for every x* EO C(vo - x)}.

The space X is called strongly nonlunar [l] if, for each Vo EO SeX)
and u EO K(vo ,0), there exists an x EO X such that u EO K(vo ,x) and
Vo $ K(vo , x) n SeX). (Actually, in [I] the point x was supposed to lie in
B(O, 1). However, it is easy to show that this definition is equivalent to the
original one.)

THEOREM 2.4. Every (A)-space is strongly nonlunar.

Proof Let X be an (A)-space, Vo EO SeX), and u EO K(vo ,0), I.e.,
sup{x"(u): x* EO C(vo)} = 1 - .3 for some .3 > O. Let

W = lx* EO C(X*): 1 - ~ < x*(vo), x*(u) < 1 - ~l.

Then W is a-open and W~ C(vo)' Choose y EO X such that C(y) C Wand

sup{x*(vo): x* EO C(X*)\C(y)} = 1 - E
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for some E :> O. Setting x 1'0 -- y, we see that W"J 6 (vo - x) and

sup{X*(vo): x* E 6(X*)\6(vo - x)} =, 1- E.

If x* E C(vo - x), then x* E Wand

() ()
x*(u - vo) = x*(u) -- x*(vo) < I -- 2 - (I - 2) = o.

Thus u E K(vo ,x). Now suppose v E B(vo , E) n K(vo , x). If x* E 6'(vo - x),
x*(v) < x*(vo) <; 1. If x* E 6 (X*)\6'(vo - x), then

x*(v) = x*(v - vo) + x*(vo) <; Ii v - Vo + I - E < 1.

Thus II vii < I. We have shown that B(vo , E) n K(vo , x) C B(O, I), i.e.,
Vo ¢ K(vo , x) n SeX). This completes the proof.

Let V C X. A point Vo E V is called a lunar point of V if x E pr;\vo) and
K(vo , x) n V * 0 imply Vo E K(vo , x) n V. V is called a moon [I] if each of
its points are lunar. V is called a sun [10] if, for each VoE V, X E P"f}(vo)
implies Vo + .\(x - vo) E pr;\vo) for every .\ ;?: O.

V is called a Kolmogorov set [5] if, for each VoE V, X E P"v1(vo) implies

min{x*(v --- vo): x* E 6'(x - vo)} <; 0

for every v E V.
It is obvious that every sun is a moon. Further, we have:

THEOREM 2.5. Let V C X. The following are equivalent:

(1) V is a sun.

(2) V is a Kolmogorov set.

(3) For each Vo E V, K(vo , x) n V = 0 for every x E pr;\vo).

The equivalence of (1) and (2) was first given in [5], while the equivalence
of (1) and (3) (as well as an alternate proof of the equivalence of (1) and (2»
was given in [I]. From the results of [I], we cite the following:

(a) if X is strongly nonlunar, then a set in X is a sun if and only if it is
a moon;

(b) the space Co(T), T locally compact Hausdorff, is strongly nonlunar;

(c) the space LI(S, E, p,), (S, E, p,) a a-finite measure space, is strongly
nonlunar if and only if (S, E, p,) is purely atomic.

The converse of (a) is still an open question, i.e., if every moon in X is a sun,
must X be strongly nonlunar? Relative to this problem we can prove the
following:
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THEOREM 2.6. Let X be a normed linear space such that every moon is a sun.
Then each point ofSeX) is not a lunar point.

Proof If some Vo E SeX) were a lunar point, then Vo E K(vo , x) n SeX) for
every x E PSfXl(Vo) n B(O, 1). Let V = [X\B(X)] U {vo}. V is obviously not
a sun. We will show V is a moon. For this it suffices to check only the point
Vo E V (since every other v E Vis interior to Vso v = PI/(v) and K(v, v) = 0).
Let x E P~;l(vo), X =I' Vo' Then x E B(O, 1) and so Vo E K(vo , x) n SeX). Thus
for each E > °there exists VE E K(vo , x) n SeX) such that II Vo - VE II < E/2.
Since K(vo , x) is open, there exists UE E K(vo ,x) and II UE II > 1 such that
'I UE -- VE Ii < E/2. Then UE E V and II UE - Vo II < E so Vo E K(vo , x) n V. Thus
Vis a moon.

Let 3P[0, 1] denote the space of all polynomials on [0, 1] endowed with the
supremum norm.

COROLLARY 2.7. In 3P[0, 1], there is a moon which is not a sun.

Proof Let X = 3P[0, 1]. It suffices to show that the function vo(t) =

-1 + 2t is a lunar point of SeX). Let x E B(O, 1). It follows that Vo - x is a
nonconstant polynomial. Using the well-known fact that df(X*) consists of
(plus and minus) all point evaluations, we see that

K(vo , x) = {v E X: vet) < vo(t) if vo(t) -- x(t) = II Vo - x II,

vet) > vo(t) if vo(t) -- x(t) = -II Vo - x II}.

Given any E > 0, we can "perturb" Vo by an amount less that E/2 at each
point to obtain a continuous function vo such that vo(t) < vo(t) for all
(finitely many) t such that vo(t) - x(t) = II Vo - x II, vo(t) > vo(t) for every t
such that vo(t) - x(t) = -II vo - x II, and Ii vo II = 1. By a result ofWolibner
[16], we can choose a polynomial v such that II v - VO II < E/2, vet) = vo(t)
for all t such that I vo(t) - x(t)1 = II Vo - x II, and II v II = 1. Thus II v - Vo II < E

and v E K(vo , x) n SeX). Hence Vo E K(vo , x) n SeX) and Vo is a lunar point
of SeX).

Remark. The same argument as in the corollary shows that, in the space
of analytic functions on [0, 1], there is a moon which is not a sun. These
results should be compared with the fact that in qo, 1] every moon is a sun.

Now we prove:

THEOREM 2.8. Let V C X. Consider the following statements:

(1) V is a sun.
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(2) For each x E X, every local minimum o{ the /ill1ction

q),(v) = I x-~ r

on V is a global minimum.

(3) V is a moon.

Then (1) =C/ (2) ;" (3). Hence in a MS-space, all three statements are equivalent.

Proof (1) => (2): Let x E X and let Vo be a local minimum for q)x, i.e.,
there exists E °such that I x - Vo Ii II x - v II for every v E V (\ B(vo , E).

If 1'0 is not a global minimum for q)x, there exists some v E V such that
II x-I'I <: x - 1'0 II. Thus v E B(x,;1 x - vol) C K(vo, x) so K(vo, x) (\ V =F 0.

Let Xl = Vo + A(X - 1'0) for some °<: A <: E/2 'I x ~- 1'0 II. Then Xl E Pv'(vo)
and K(vo , Xl) = K(l'o, x). Since V is a sun, K(vo , Xl) (\ V =~ ,which is a
contradiction.

(2) => (3): If V is not a moon, there exists Vo E V and x E Pv'(vo) with
K(vo , x) (\ V =F 0 such that Vo rt (Kvo , x) (\ V i.e., there exists E Osuch
that

B(vo , E) (\ K(vo , x) C X'\ v.

Let U E K(vo , x) (\ V. Then, for some A > 0, U E B(vo+ A(X~ vo), A il x '-~ Vo I').
Setting Xl = 1'0 + A(X -~ vo) we get that U E B(xl , Ii Xl - 1'0 I), K(vo , Xl) =~=

K(vo , x), and

i.e., Xl has 1'0 as a local best approximation in V. But I. Xl - U <: I Xl - Vo
so Vo is not a global best approximation to Xl .

Remark. In general, none of the implications of Theorem 2.8 is reversible.
To see that (2) => (1) is not true, we need only consider the set V which is the
complement of the open unit ball in the Euclidean plane. V is obviously not
a sun but it is easy to verify that the functions q)x have only global minima.

To see that (3) => (2) is generally false, let X be the Euclidean plane and let

This set is readily seen to be a moon, but the point x = (0, -t) has (0, 1) as
a local best approximation in V which is not a global best approximation.

For the remainder of this section, we investigate the connection between
suns and moons with certain continuity properties of the metric projection.
We consider a more general concept than the usual concept of lower semi
continuity.
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DEFINITION. Let V C X and Xo E X. We say that P v is outer radially lower
continuous (abbreviated ORL-continuous) at Xo if, for each VoE Pv(xo) and
each open set W such that Pv(xo) n W cF 0, there exists a neighborhood U
of Xo such that Pv(x) n W cF 0 for every x E Un {Vo + A(Xo - vo): A ~ I}.
P v is called ORL-continuous if it is ORL-continuous at each point of X.
(Note that Pv is obviously ORL-continuous at each point of v.)

LEMMA 2.9. Let V C X and X oE X. The following statements are
equivalent:

(1) P v is ORL-continuous at Xo .

(2) For each Vo , V1 in Pv(xo) and each E > 0, there exists °> °such that
Pv(x) n B(v1 , E) cF 0 for all x in {vo + A(Xo - vo): 1 ~ A < 1 + o}.

(3) For each Vo , v1in Pv(xo) and every sequence Xn in {vo+ A(Xo- vo): A~ I}
with Xn --+ Xo , there exists Vn E Pv(xn) such that Vn --+ V1 .

Proof (1) => (2) is clear.

(2) => (3): Let Vo , v1 in Pv(xo) and Xn = Vo+ An(Xo - vo) with An > 1 and
An --+ 1 (i.e., Xn --+ xo). For E = 1 there exists 01 > °such that Pv(x) n
B(v1, 1) cF 0 for every x E V8 ,where V8 = {Vo + A(Xo - vo): 1 < A< 1 + O}.

1

Choose n1such that X n E V8 for every n ~ n1 . Choose Y1 E Pv(xn ) n B(v1, 1).
2 2

For E = 1 there exists a 02 , °< 02 < °1 , such that Pv(x) n B(V1 , 1) cF 0
for every x E V8 • Let n2 > n1 be such that X n E V8 for every n ~ n2 and

2 2

choose Y2 E Pv(xn ) n B(v1 ,1). Continuing in this fashion, we obtain a
2

sequence of integers (nk), a decreasing sequence of positive numbers (0,,),
and a sequence (Yk) such that Ok --+ 0, X n E V8 for every n ~ nk, and

k

Yk E Pv(xn) n B(v1 ,11k). We define a sequence (vn) by taking Vn C P(xn) for
n = 1, ... , n1 - 1, vnk = Yk for every k, and Vn E Pv(xn ) n B(v1 ,11k) for
nk < n < nk+l . Then Vn E Pv(xn) for every nand Vn --+ V1 .

(3) => (1): Suppose (3) holds but (I) fails. Then there exists VoE Pv(xo) and
an open set W with Pv(xo) n W cF 0 such that for every neighborhood U
of XI) there exists an x in U n {vo + A(Xo - vo): A > I} such that
Pv(x) n W = 0. Choose V1 E Pv(xo) n W. Then for every n there exists
Xn = Vo+ An(Xo - vo) with 1 < An < lin such thatPv(xn) n W = 0. Then
Xn --+ Xo , but, if Vn E Pv(xn), then Vn rf W so Vn -,4- V1 .

THEOREM 2.10. If V is a sun, then Pv is ORL-continuous.

Proof
that if

Let X oE X, VO , V1 in Pv(xo), and E > 0. It suffices to show
x = Vo + A(Xo - vo), A > 1, then Pv(x) n B(v1 , E) cF 0.
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Now ['0 E Pv(x) since V is a sun, and

i[ x - VI [[ [[(1 ;\)(vo -- x)[ -t-[ X o - V l II

= (A - 1) Vo -- X o +[ X o -- Vo II

!I x - vIII

implies II x - vII: = x - Vo Ie and V1 E Pv(x). This completes the proof.

THEOREM 2.11. Let V C X. If PI' is ORL-continuous, then "local best
approximations are global," i.e., statement (2) of Theorem 2.8 holds.

Proof If not, there exists Xo E )(, Vo E V, and E :> 0 such that![ X o - Vo ::;

I[ X O - v II for every v E B(vo , E) n V, but [I X O - Vo [I :> dist(xo , V). Let Xl be
the last point on the line segment [vo , x o] which has Vo as a best (global)
approximation in V. Thus dist(x, V) < I[ x - VO [I for every x E (Xl' x o].

Choose 0:> 0 such that Pv(x) n B(vo , E) eft for every x E Va==c
{Xl + A(xI - Vo): I < A < 1 + oj. If x,\ E Va and v E PV(XA) n B(vo , E), then
II XA - v [[ < [[ XA - Vo [[ and so

which contradicts the fact that Vo is a local best approximation to X o .

By combining Theorems 2.8, 2.10, and 2.11 we obtain the theorem stated
in the introduction. In particular, we have:

THEOREM 2.12. Let X be MS-space. A subset of X is a sun if and only if its
metric projection is ORL-continuous.

3. THE SPACE Co(T, X)

Let T be a locally compact Hausdorff space and X a (real) normed linear
space. We denote by Co(T, X) the space of all continuous functions z: T ->- X
which vanish at infinity, and endowed with the supremum norm:

z I! = sup !I z(t)I[x .
lET

Thus z E Co(T, X) if and only if z is a continuous X-valued function on T
such that the set {t E T: 'I z(t)I[x ;:? E} is compact for every E :> O. With the
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pointwise linear operations, Co(T, X) is a normed linear space. Whenever it is
necessary to distinguish between the norms in Co(T, X) and X, we denote the
latter by II . Ilx . We often write Co(T) for Co(T, ~), when ~ is the set of real
numbers.

For a given Z E Co(T, X), its critical point set is defined by

crit Z = {t E T: II z(t)llx = II z II}.

A space X is called an (Ac)-space if it is an (A)-space and 6"(x) is weak*-closed
for every nonzero x in X. (The latter condition is always satisfied, in particular,
when 6"(X*) is weak*-closed.) The main result of this section is:

THEOREM 3.1. Let X be an (Ac)-space. Then Co(T, X) is an (A)-space.

COROLLARY 3.2. IfX is afinite-dimensionalpolyhedral space, then Co(T, X)
is an (A)-space. In particular, Co(T) is an (A)-space.

The proof of Theorem 3.1 depends on a number of lemmas which are of
independent interest. If x* E X* and t E T, we denote by z* = x*(-(t)) the
element of Co(T, X)* defined by z*(z) = x*(z(t)) for every z E Co(T, X). Our
first lemma characterizes the extreme points of the unit ball in Co(T, X)* and
was proved in collaboration with P. D. Morris. It generalizes a result of
Singer [13], who proved it in the case in which T is compact and X a Banach
space. Our proof, as distinct from his, is independent of the representation of
the elements of the dual of Co(T, X).

LEMMA 3.3. Let X be a (real or complex) normed linear space and
Z = Co(T, X). Then

6"(Z*) = {x*(-(t)): x* E 6"(X*), t E T}.

Proof Let A = {x*(·(t)): x* E B(X*), t E T}.

CLAIM. A is a weak*-closed (hence compact) subset of B(Z*). For let
Zn * == Xa *(·(tn)) be a net in A which converges weak* to some z* E B(Z*).

Case 1. (ta) has a cluster point t E T. Then there is a subnet (t{3) such that
t{3 --+ t. Now (Z{3*) also converges weak* to z*. By passing to a further subnet
of (xo*) if necessary, we may assume that (X{3*) converges weak* to some
x* E B(X*). Thus, for every Z E Z,

z*(z) = lim Z{3*(z) = lim xo*(z(t{3)) = x*(z(t))
{3 (3

and hence z* = x*(·(t)) E A.
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Case 2. (t~) has no cluster point. If z E Z and E 0, choose a compact set
To C T such that!1 z(t)I! < E for every t E T\ To . Since (ta) has no cluster point,
there exists an index CXo such that ta E T\ To for every (X :? (Xo . Hence, for every
cx~cxo,

z(ta)i < E

implies that Za * converges weak* to 0 EA.

CLAIM. The weak*-closed convex hull of A, coCA), is equal to B(Z*).
For, if not, then by a well-known separation theorem [9, p. 417] there would
exist z E Z, and Zo * E B(Z*)\co(A), such that

Re zo*(z) > sup{Re z*(z): z* E coCA)}

:.?o sup{Re x*(z(t)): x* E B(X*), t E T}

= Ilzl!,
which is absurd.

CLAIM. 6"(Z*) C {x*(·(t)): x* E 6"(X*), tEn.
Let E = {x*(·(t)): x* E 6"(X*), tEn. By a theorem of Milman (cf., e.g.,

[9, p, 440]), 6'(Z*) C A. If there is some z* E 6"(Z*)\E, then z* = x*(-(t))
for some x* E B(X*)\6'(X*) and some t E T. Hence there exist Xl *, X 2* in B(X*),
x 1* * x2 *suchthatx* = Hx1* +- x2*) and soz* = Hx1*(-(t)) --L x2*(·(t))],
which contradicts z* E 6'(Z*). Thus 6'(Z*) C E.

To complete the proof of Lemma 3.3, we must show that E C 6(Z*). Let
xo* E 6{X*), to E T, and suppose

for some z;* E B(Z*).

Let z E Z, II z I! ~ I, and suppose Xo*(z(to)) = o. We will show that
Z1 *(z) = Z2*(z) = o. Fix an arbitrary E > O. Let To = {t: .1 Z(t)!i :.?o E} and
Y = {t: !! z(t)!! > E/2}. Then U is a neighborhood of the compact set To.
By Urysohn's lemma, we choosef E Co(T) such that 0 ~ f ~ 1,f = 1 on To ,
andf = 0 off U. Set Z1 = zf Then Z1 E Z, !! z1!1 ~ 1, and, for every t E T,

II z(t) - Z1(t), 1 = [1 - f(t)] !I z(t)!1 < E,

i.e., II z - Z1 < E. Again by Urysohn's lemma, we choose g E Co(T), with
o ~ g ~ 1, such that g(to) == 1 and g = 0 off the set {t: I! z(t)l! < E/2}.
Choose X E SeX) such that Re Xo*(x) > 1 - (E/4) and set Z2 = xg. Then
Z2 E Z, II z21! = 1, and Z2(tO) = X so

1 - ~ < Re X O*(Z2(tO)) = 4[Re Zl*(Z2) + Re Z2*(Z2)]'
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which implies
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(I)

Also, Ii Zl + Z2 'il = I implies that

1 - ~ < Re Xo*(Z2(tO» = Re Xo*[ZlUO) + Z2(tO)]

= ~ [Re Zl *(Zl + Z2) + Re Z2 *(Zl + Z2)],

from which it follows that

(2) min{Re Zl *(Zl + Z2), Re Z2 *(Zl + Z2)} > I ~ (E/2).

Combining (I) and (2) we get

for i = 1,2.

A routine computation shows that

for i = 1,2. Thus

1 Jm Zi*(Zl)I :S:;; 1 Jm Zi*(Zl + z2)1 + I Jm Zi*(Z2) 1 :S~ 2 y;

for i = 1,2. Hence, for i = 1,2,

Since E was arbitrary, this shows that Zl*(z) = Z2*(z) = O. We have shown
that I' z!i :S:;; 1 and X o*(zUo» = 0 imply Zl*(z) = Z2*(z) = O. It follows that
Zi * = (XiXO *(-(t)) for some scalars (Xi (i = 1, 2). Since Xo*( ·(t0» = HZ1 * + Z2 *),

OC1 = (X2 = 1 and Xo*(.(t0» E C(Z*). This completes the proof.

It is well known [12] that, if Y is a subspace of the normed linear space Z,
then C(Y*) C {z* Iy: z* E C(Z*)}. Thus

COROLLARY 3.4. Let Y be a subspace of Co(T, X). Then

C(Y*) C {x*(·(t»: x* E C(X*), t E T}.

We state the following simple result for reference purposes since it is used
several times:
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LEMMA 3.5. Let X and Z be as in Lemma 3.3. Then for each compact set
To C T, each neighborhood U ol To , and each x E X, there exists Z E Z such
that Z= x on To, z = 0 off U, and I: z = I x! .

Proof By Urysohn's lemma there exists fE Co(T) such that 0 I I,
f = I on To, and I= 0 off U. The element z = xl works.

LEMMA 3.6. Let X and Z be as in Lemma 3.3. Then 6(Z*) is homeomorphic
to the product T X 0"(X*) (relative to the a-topologies on 8(Z*) and 8(X*)).

Proof By Lemma 3.3,

r5"(Z*) = {x*(-(t)): x* E 8(X*), tEn.

We define F: T X r5"(X*) -+ I&'(Z*) by

F[(t, x*)] = x*(-(t)).

F is clearly onto and continuous. Suppose Xl *(-(t)) = x2*(-(t)). If t1 ~ t2 ,
then taking an x E X\xt-1(0), an application of Lemma 3.5 yields a z E Z
such that z(t1) = x and z(t2) == O. But this implies the contradiction
Xl *(z(t1)) ~ x2*(Z(t2))' Hence t1 = t2 . A similar argument shows Xl * == X2*.
Thus Fis one-to-one. To show F-1 is continuous, let x, *(-(t~)) -+ x*(-(t)). We
must verify that x~* -'>- x* and t~* -+ t. If t~* -1+ t, there exists a neighborhood
U of t and a subnet (ts) such that ta rt U for every f3. By Lemma 3.5 there is
z E Z such that z(t)= X E X\X*-l(O) and z = 0 off U. Then

o ~ x*(x) =c x*(z(t)) = lim xa*(z(ta)) = 0,

which is absurd. Thus t~ -+ t. Now let X E X be arbitrary. Choose a neigh
borhood U of t such that V is compact, and choose a o such that t('J. E U for
every a ~ ao . By Lemma 3.5 there exists z E Z such that z = x on U. Then,
for every a ~ ao ,

x('J. *(x) =..• x~ *(z(t~)) -+ x*(z(t)) = x*(x).

Hence x~* -+ x* and the proof is complete.

DEFINITION. Let X and Y be topological spaces. A set-valued map
T: X -+ 2Y (the set of all closed subsets of Y) is said to be upper semi
continuous (abbreviated u.s.c.) at Xoiffor each neighborhood W of T(xo) there
exists a neighborhood U of Xosuch that T(x) C W for every x C U. T is called
u.s.c. if it is u.s.c. at each point.

LEMMA 3.7. Let X be an (A)-space. Then (relative to the a-topology on
t%'(X*)) the peak set mapping x -+ t%'(x) is U.S.c.
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Proof Let Xo E X and W be a a-open neighborhood of @(xo). If X o = 0,
the result is trivially true. If Xo =1= 0, there is ayE X such that @(y) C Wand

sup{x*(xo): x* E@(X*)\@(y)}= ,I x o !: - 8

for some 8 > O. Let

u = {x E X: II x - XO II < 812}.

If x E V and x* E @(X*)\@O(y), we have

x*(x) = x*(x - xo) + x*(xo)

:s;; II x - X o II + II X o - 8 < il X o il - 812 < II x,!,

so x* rt t(x). Thus @(x) C t'(y) C W for each x E V.

Proof of Theorem 3.1. Let z ES(Z) and let W be a a-open neighborhood
of @(z). We have to show the existence of ayE Z such that W-:) @(y) and

sup{z*(z): z* E@(Z*)\@(y)} < 1.

By Lemma 3.6, we may assume that

W = U F(A i x Vi) -:) 6'(z),
tEl

where F is the homeomorphism constructed in Lemma 3.6, I is some index set,
and At and Vi are open in T and @(X*), respectively. By assumption, 6'(z(t»
is compact whenever z(t) =1= O. Using Lemma 3.7, we deduce that the map
t ---+ @(z(t», and hence also the map t ---+ {t} X @(z(t», is u.s.c. Since crit z is
compact, it follows by a theorem of Michael [11] that

U [{t} x @(z(t»],
tEcrit z

and hence

6"(z) = F ( U [{t} x C(z(t»]),
tEcrlt z

is compact. Thus there exist sets Al X VI'"'' A v x V v such that

v

C(z) C UF(A i X Vi) C W.
i=l

For each t Ecrit z, define

aCt) = {i E N: Ai X Vt n {t} X C(z(t» =1= 0} =1= 0,

aCt) = U Vi -:) C(z(t»,
tEart)
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A(t) n Ai:J {fl.
tEO,(t)

Note that A(t) is open and

0"(z) C U F[{t) Y lY(t)] C U F[A(t) x lX(t)] C W.
tEcri! z tEcri! z

Now t _.> ,) (z(t)) is u.s.c. and so, for each t E crit z, there exists a neigh
borhood B(t) of t such that B(t) C A(t) and 8'(Z(t')) C cx(t) for every t ' E B(t).
Thus

0"(z) C U F[B(t) x l:x(t)] C W.
tEcrilz

Let C = UIEcritz B(t). Then, for each t' E C, we see that

F[{t '} X tS"(Z(t'))] C U F[B(t) x cx(t)] C W.
tEcri! z

We now choose an open set M such that

crit z C Me M C U B(t),
tEerH z

M is a compact GB , and

Me {t: II z(t)11 > t}·

Next we extend the definition of cx(t) and B(t) to all of M. Since M is compact,
there exist tt ,... , tn in crit z such that M C U~ BI,;, where BI,; = B(tk ). For
each t E M\,crit z, define

B(t) = n{B" : t E Bd

and

cx(t) == U{cx(t,,): t E B,,}.

Note that B(t) is a neighborhood of t and cx(t) is open.
Let t E M\crit z. Then, for each t' E B(t), 8'(z(t')) C cx(t). Also,

F[{t} X 0"(z(t))] C U F[B(t) X cxU)] C w.
tEM

To verify the relation UTE.I\? F[B(t) X cx(!)] C W, it suffices to show
F[B(t) x cx(t)] C W for every t E M\crit z. Now

BU) X cxU) = n{B" : t E Bk } X n{CX(tIc): t E Bk }

lJ ln{B; : t E B;} X cx(t,,)( C lJ Bic x cx(t,J
{1c:tEBk} I , {,,:tEBk}
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F[B(t) x a(t)] C U F[Bk X a(tk)] C W.
{k:tEBkl
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Since X has the (A)-property, for each t E M there exists Xt E X, Ii X t II = 1,
such that

and

sup{X*(z(t»: x* E C(X*)\tff(xt)} = Ii z(t)11 - E t

for some Et > O. By the continuity of z and the u.s.c. of t -+ tff(z(t», for each
t EM there is a neighborhood D(t) of t such that D(t) C B(t) and, for each
t' E D(t),

and II z(t') - z(t)11 < Etl2.

Since M is compact and UtEM D(t) :J M there exist SI , ... , Sm in M such that
M C U:=I Dv. , where Dv. = D(Sv.)'

Since M is a compact Ga , we can choose a "partition of unity" PI"'" Pm
in Co(T) as follows: Pi ;?o 0 for every i, Pi = 0 on M\Di , L~ Pi = 1 on M,
and L:~ Pi < 1 off M. We set

m

yet) = L Pi(t) Xi ,
1

For each t E M, put

where Xi = Xs, •

bet) = {i E N: p;{t) # OJ.

We now show that

tff(y t» = n C(x;)
iEblt)

for every t E M.

First note that ()iEb(t) tff(Xi) # 0 since tff(Xi):J tff(z(t» for i E bet). Now
x* E ()iEb{t) tff(Xi) implies

m

x*(y(t» = L Pi(t) X*(Xi) = I Pi(t) = 1 ;?o II y(t)li·
1 iEb(t)

Thus x* E tff(y(t». Conversely, if x* E tff(y(t», then for io E bet)

1 = y(t)!1 = x*(y(t» = L Pi(t) X*(Xi) < Pi.(t) X*(XiJ + 1 - Pio(t),

which implies that 1 :S; X*(Xi
o
) and so x* E C(xi.).
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We have i y(t)== Y ~~~ I for every f EM and nit)} =:J lJ. But L P, < 1
off M so I y(t) < 1 off M and crity = M. For every f E M.

n 6(X,) 6(y(t») C n c,(s,,),
/E1J(t) {LEVU)

so

{t} X C(y(t» c n D i X n (X(s,,) C D; (X(s;) C B(s;) >«(X(s;)
;Eb(t) "Eb(t)

for every i E bet). Hence

F[{t} X t(y(t»] C F[B(s;) X (X(s;)] C W.

But

C(y) = U F[{t} X C(y(t»]
tEM

and so C{y) C W.
It remains to show that

sup{z*(Z): z* E 6(Z*)\t5"(y)} < I,

i.e.,

sup{x*(z(t»: x*(·(t) E C'(Z*)\o'(y)} < 1.

Now x*( ·(t» E t&'(Z*)\8( y) if and only if x* E o{X*) and either t rf' crit y = M
or x* rf' t5"(y(t», t E crit y. If 1 E M and x* rf' o( y(I), then x* rf' t5"(xJ for some
i E bet) implies tED; and

x*(z(t» = x*(z(t)- z(t;» + x*(z(t;»

sup{li z(t)ll: t rf' M} = 1 - E1

for some E1 > O. Taking E = min{ Eo ' El}, we conclude

sup{x*(z(t»: x*('(I» E t5"(Z*)\t5"(y)} ~ 1 - E < I,

and the proof is complete.
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4. PRODUCT SPACES
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Let (Xi)' i E I, be a collection of real normed linear spaces. By the I",,-product
of the Xi , denoted (niE! Xi)! , we mean the set of all functions x on I such
that x(i) E Xi for each i (i.e.,""x E niE! Xi) and SUPiE! II x(i)l! < 00. Defining,
the linear operations pointwise and a norm by II x II = SUPiE! II x(i)II, (niE! Xi)!
is a normed linear space. By the co-product of the Xi , denoted (niE! Xi)c ~o
we mean the subspace of (niE! Xi)! consisting of those x such that the set
{i E I: II x(i)I! ? E} is finite for every E"" > O. Similarly, the II-product of the Xi,
denoted (niE! Xi)! ,is the set of all functions x in niE! Xi such that the norm

1

II x II .'= LiE! II x(i)11 is finite.
It is well known (cf. [8]) that (ni Xi*)! (respectively, (ni Xi*)! ) is

1 ""
isometric to (ni Xi)c (respectively, (ni Xi);") via the mapping (X*(i))iE! -- x*o 1

defined by

x*(x) = L x*(i) x(i)
iEI

for every x in the product space. Also, it can be readily verified that if
X = (ni Xi)! (respectively, X = (ni Xi)! ), then

1 ""

0"(X) = {x E X: x(ex) E 0"(X,,) for some ex and x(i) = 0 if i =1= ex}

(respectively, 0"(X) = {x E X: x(i) E 0"(Xi) for every in.
We first consider the co-product X = (ni Xi)c . For any x E X, we define

o

crit x = {i E I: II x(i)11 = II x II}.

THEOREM 4.1. (ni Xi)c is an (A)-space if and only if each Xi is ano
(A)-space.

The essential part of the proof is contained in

LEMMA 4.2. Let X = (niE! Xi)c ,and x E X\{O}. Then
o

(a) 0"(x) = {x* E X: x*(j) E 0"(x(j)) for some j E crit x and x*(i) = 0 if
i =1= n.

(b) If W" is a-open in 0"(X" *) and W = niE! Wi , where Wi = {O} if i =1= ex,
then W is a-open in 0"(X*).

(e) If W is a-open in 0"(X*) and W-:J 0"(x), then,for eachj E erit x, the set

W j = {x*(j): x* E W} n 0"(Xj *)

is a-open in 0"(Xj *) and W j -:J 0"(x(j)).
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Proal The proof of (a) is routine and omitted. For (b), let x, * EO Wei .
Then there exist X,,! ,... , x Cin in X, and E 0 such that the set

n

Uri = n {y"* EO 6"(X" *): i Y" *(x",,) ~ x"*(x",,) I < E}
"~1

is contained in Wei . We can assume x"*(x,,!) cF 0 for some k. Then, for E > 0
small enough, Y" * EO U" implies Y" *(x",,) cF 0 for some k. Define x" EO X by
putting x,,(ex) = x"" and xii) = 0 if i cF ex. Let x* EO x* be defined by
x*(ex) = x"* and x*(i) = 0 if i * ex. Then the u-open neighborhood of x*

n

U = n {y* EO 6"(X*): 1 Y*(Xk) - x*(x,,)l < E}

"~1

has the property that, if y* EO U, then y*(ex) EO Uri C Wei and y*(i) = 0 if i cF ex.

Thus U C W so W is u-open.
For the proof of (c), we first observe that Wj ::) 6"(x(j)) for every j EO crit x

is clear. Let tEO crit x and Xj* EO Wj . Then there exists x* EO W such that
x*(j) = x/ and x*(i) = 0 if i cF j. Choose a u-open set

n

U = n {y* EO 6"(X*): IY*(Xk) - x *(x,,)I < E}
"~1

so that W::) U. Then we see that
n

Wj ::) n {y*(j) EO 6"(X*): i y*(J) x,,(j) - x*(j) x,,(J)1 < E}
k~l

and the right side is a u-open neighborhood of x*i(j). Thus Wj is u-open.

Proof of Theorem 4.1. Let X = (11 Xi)c
o

• Suppose that X is an (A)-space.
Fix an arbitrary index ex, let x" EO S(XJ, and let W" be a u-open set in 6"(X" *)
such that W,,::) 6"(x,,). Define x EO Xby setting x(i) = 0 ifi =l ex and x(ex) = x".
Let W = lli Wi where Wi = {O} if i cF ex. Then W is u-open in 6"(X*) by
part (b) of Lemma 4.2 and 6"(x) C W. By the (A)-property, there exists a y EO X
such that 6"(y) C Wand

sup{x*(x): x* EO rt(X*)\6"(y)} < I.

It follows that crit y = crit x = iX, 6"( y,,) C W" , and

sup{x*(ex) x(ex): x*(cx) EO 6"(X"*)\rt(y(cx))}

.:s:; sup{x*(x): either i EO crit y and x*(i) EO 6"(Xi*)\6"(y(i))

or i rf crit y and x*(i) EO 6"(Xi*)}

= sup{x*(x): x* EO 6"(X*)\6"(y)} < 1.

Thus X" is an (A)-space.



GEOMETRIC PROPERTIES OF SUNS 265

Now suppose each Xi is an (A)-space. Let x E SeX) and W be
a a-open set with W~ C(x). By Lemma 4.2(c), for each j E crit x, the set
Wj == {x*(j): x* E W} () C(X/) is a-open in C(Xj*) and Wj ~ C(x(j)). By
the (A)-property, there exists for eachj E crit x an element Yj E S(Xj) such that
C(Yj) C Wj and

for some Ej > O. Choose Eo > 0 such that crit x = {j: II xU)1I > I - EO}'

Define Y in X by y(j) = Yi if j E crit x and y(i) = 0 if i ¢: crit x. Then
crit y = crit x, C(y) C W, and

sup{x*(x): x* E C(X*)\C(y)}

= sup{x*(x): either i E crit y and x*(i) E C(Xi*)\C(y(i))

or i ¢: crit y and x*(i) E C(Xi*)}

~ 1- .mip {EO, Ej} < 1.
1ECflt It

Thus X is an (A)-space and the proof is complete.

We next consider II-products of certain (A)-spaces.

THEOREM 4.3. Let (Xi)iEl be a collection of (A)-spaces such that C(Xi*) is
weak* closedfor each i. Then (Di Xi)l is an (A)-space.

1

Proof Let X = (D Xi)l . We first note the natural identification of C(X*)
1

with DiEl C(Xi*)· In fact, taking the a-topologies on C(X*) and C(Xi*) and
the product topology on Di C(Xi *), this identification is easily seen to be a
homeomorphism (using the fact that convergence in the product topology is
equivalent to coordinatewise convergence). In particular, 6""(X*) is weak*
closed (hence a-compact). Now let x E SeX) and let W be a a-open set in
C(X*) which contains C(x). By the a-compactness of C(x) , it follows that there
exist a finite number of a-open sets of the type

(k = I, ... , n),

where Ui = C(Xi*) for all but finitely many indices i(k, I), ... , i(k, nk) and Ui
is a-open in C(Xi*) if i = i(k, v) (v = I, ... , nk), such that

n

C(x) C U Vk C W.
k~I
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Define 10 = U(k, v): k ~= I, ... , n; v = I, ... , nd and supp x = {i E I: xU) i= 0).
for any.i E supp x we have

tff(x(j» C prj CQ v+
where prj denotes the projection onto thejth coordinate space. Since X j is an
(A)-space, there is Yj E X j such that

and

sup{x*(j) x(j): x*(j) E 6'(Xj *)\@'(yj)} = x(j)i: - Ej

for some Ej > O. Next we define the element y E X by

Then

y(i) = \Yi,
10,

if i E supp x n 10 ,

otherwise.

n

tff(y) C U Vk C W.

Also, if x* E tff(X*)\tff(y), then x*(j) ¢: t%'(y(j» for some .i E supp Y so
x*(j) ¢: tff(y(j) for some j E supp x. It follows that

x*(x) = I x*(i) xU) ~ I Ii XU)li T Ii x(j)li - Ej
i#j

= I - Ej ~ 1 - E,

where E = min{Ej:j E supp x n lo}. Hence

sup{x*(x): x* E 6"(X*)\t%( y)} I - E < 1.

and the proof is complete.

Taking Xi to be the set of real numbers for each i, we deduce

COROLLARY 4.4. 11(S) is an (A)-space for any set S.

COROLLARY 4.5. Let L1 = L1(S, 1:, fL), where (S, 1:, fL) is a a-jinite
measure space. Then L 1 is an (A)-space ifand only if (S, 1:, fL) is purely atomic.

Proof If L1 is an (A)-space, then (by Theorem 2.4) L1 is strongly nonlunar
so, by Theorem 5.4 of [1], (S,1:, fL) is purely atomic. Conversely, if (S, 1:, fL)
is purely atomic, then L1 is of type 11(T) for some set T, so the conclusion
follows from Corollary 4.4.
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