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1. INTRODUCTION

The concept of a sun, introduced by Efimov and Steckin in [10], has proved
to be rather important in the general theory of approximation in normed
linear spaces. (Recall that a subset V' of a normed linear space X is called a sun
if, whenever v, € V is a best approximation to some x € X, then v, is also a best
approximation to every point on the ray from v, through x.) We mention
only the following results:

(1) Every convex set is a sun and in smooth spaces every proximinal sun
is convex.

(2) In finite-dimensional normed linear spaces every Chebyshev set is a
sun (cf. Vlasov [14]).

But it is still an open problem whether a Chebyshev set in an arbitrary normed
linear space must be a sun.! In [6, 7] the concept of a Kolmogorov set was
introduced and it was observed that these sets are equivalent to suns. A
subset ¥ of a normed linear space is called a Kolmogorov set if we have
Vo K, ,f) = & for every v, in Py(f). Here P,(f) denotes the set of best
approximations of ' by means of the elements of ¥ and K(v, , f) denotes the
cone

K@, ,f) :={ve X: Re x*(v — vy) > 0 for each x* € §(f — v,)}

! Dunham has recently given an example of a Chebyshev subset in C[0, 1] which is
not a sun.
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and §(f — v,) denotes the set of extremal points of the set

x*e X=ix* o land x*(f — vg) = 1 f - ol

1t is now known (cf. {4, 5] and the bibliography cited there) that much of the
linear or convex approximation theory can be extended to approximation by
elements of suns. In [5] there was given a characterization of suns by intrinsic
properties (i.e., without referring to an approximation problem) which is
rather complicated mainly due to the fact that for characterizing the suns
geometrically one uses not only the linear functionals in &(f -- v,) but also
the functionals of the o ,-closed sets containing &(f — vy) (cf. [5] for details).
This is in contrast to earlier results [3, 4] in the space C(7, H), i.e., the space
of all continuous mappings from a compact Hausdorff-space 7 into a
pre-Hilbert-space H and endowed with the Chebyshev-norm. In this special
case we have the following characterization (cf. [3, 4]): A subset V of C(T, H)
is a sun if and only if for each fin C(7, H) we have K(f, v,) N V 5 < implies
v, 1s in the closure of the set

e Vi(f(t) — vyt), vo(t) — vy(t)) = $Ho(t) — vy(2)i[* for every ¢ in crit( f —uvg)}.
Here crit(f — v,) denotes the set
fte T f —vo il = 1 f(t) — o)l

In the special case H == R this condition simplifies to: A subset V' of C(T, R)
is a sun if and only if for each fin C(T, R) we have K(f, v,) N V # @ implies
v, in the closure of the set

e Vi(f(t) — vd(0)) + ((t) — ve(1)) = 0 for every ¢ in crit{ f — v,)}.

Taking in account the representation of the extremal functionals on C(7T, H)
we see that for characterizing the suns in C(7, H) we need only the linear
functionals in &(f — v,). The condition valid in the special case C(7, R) is
easy generalized to arbitrary normed linear spaces, namely,

(M) K(f,itg NV +# @ = v,e K(f, o) O V.

It is easy to see that a sun in any normed linear space satisfies this condition
{M). There arises the question whether there are spaces other than C(T, R)
where this condition (M) is always sufficient for a set ' to be sun. We will call
such spaces MS-spaces. This problem was investigated first in [1]. It was
shown there that a geometric property of the unit sphere (‘“‘strong non-
lunarity”) was sufficient in order that every set with property (M) (such sets
are called moons in [1]) be a sun. In particular, the following spaces are
strongly nonlunar [1]:

(a) the space Cy(T), T locally compact HausdorfT;
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(b) the space L,(S, 2, w), (S, 2, w) a o-finite measure space, if and only
if (S, 2, p) is purely atomic;

(c) every finite-dimensional space whose unit-ball is a polyhedron.

It is not known whether every MS-space is strongly nonlunar.
In this work we continue the study begun in [1]. In §2 we first derive some
properties of suns. The main result in this part is the following:

THEOREM. Let V be a subset of a real normed linear space X. Then we have
the implications “(i) = (i + 1)", i =1,2,3,

(1) Visa sun;

(2) the metric projection Py, associated with V is ORL-continuous (see
definition belowy);

(3) for each f in X, every local minimum of the functional

Di(v) ==/ —v]
on Vis a global minimum,

4 Visamoon.

In a MS-space all these conditions are obviously equivalent.

Here ORL-continuity refers to a generalization of the usual notion of lower
semi-continuity for set-valued mappings (see §2 for a precise definition).
Roughly speaking the metric projection is ORL-continuous at a given point
if it is lower semi-continuous as we approach the point from a certain
direction along prescribed lines. It should be remarked that the metric
projection associated with a sun in general is not continuous even in MS-
spaces, as the results of Werner [15] show in the case of rational functions
in the space Cla, b]. Perhaps surprising, then, is in MS-spaces suns are
characterized by the ORL-continuity of their metric projections. (It is not
known whether this result is valid in non-MS-spaces, e.g., in strictly convex
spaces.) An immediate consequence is the result that in a MS-space every
Chebyshev set with ORL-continuous metric projection is a sun. In §§3 and 4
we describe some constructions to get new MS-spaces from given ones. For
this purpose we define in §2 the notion of an (A)-space, which is (formaily
at least) a strengthening of strong nonlunarity. We get the following theorems:

(1) If T is locally compact Hausdorff and X an (A)-space (with a certain
additional property), then the space Cy(T, X) is an (A)-space.

(2y IfX;,iinl is afamily of (A)-spaces then the ¢-product is an (A)-space;
and the l-product is an (A)-space provided each X, satisfies a certain additional
property.



248 BROSOWSKI AND DEUTSCH

During the course of the proof of the firstof these two theorems we obtain—
in collaboration with P. D. Morris—a representation of the extreme points
of the unit ball in the dual of Cy(7, X). This generalizes a result of Singer [12],
who proved the special case when 7 is compact and X a Banach space using
more elaborate machinery.

2. GENERAL RESULTS

Throughout this paper, unless specified otherwise, X will denote a real
normed linear space, X* its dual space, B(X) = {xe X:|| x| < 1}, S(X) =
{xeX:|x|| =1}, B(x,e) = {yeX:!|x — y| < €, and &(X) is the set of
extreme points of B(X). For each x € X, we denote the extreme points of the
peaking set for x by &(x). Thus

E(x) = {x* e 600 x*(x) = | x

By the o-topology on &(X*), we will mean the relative weak* topology on
&(X*). For a given set V in X, the metric projection onto V is the set-valued
mapping P, defined on X by

Py(x) ={veV:ix—uv]|=dstx V)i
For an element v, € V, the inverse of P, is given by
Pil(vy) = {x € X: vy € Py(x)}.

If P(x) = @ (respectively, P,(x) is a singleton) for each x € X, V' is called a
proximinal (respectively, Chebyshev) set.
All other undefined notation or terminology can be found in [9].

DEerInITION 2.1, X is called an (A)-space if for each nonzero x in X and
each o-open subset W D &(x), there exists y in X such that

M) WD E(y)
and
2 sup{x*(x): x* € E(X*NE(y)) <l x|l.

Remark. We note that condition (2) implies that &(y) D &(x). Also, by
Lemma 2 in [7], conditions (1) and (2) are equivalent to the existence of z € X
such that
1" WD é&(2)
and
2" sup{x*(x): x* € SN2} < |l x|,
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where &'(z) denotes the o-interior of £(z). (This formulation of (A)-space will
be useful in the proof of Theorem 3.1.)

As an immediate consequence of the definition, we have (taking y equal
to x):

LemMmA 2.2. If, for each x € S(X),
sup{x*(x): x* e S(X*)\E(x)} < 1,

then X is an (A)-space.

COROLLARY 2.3. Al finite-dimensional polyhedral spaces (i.e., those whose
unit balls are polygons) and c, (or more generally c(T) for any index set T) are
(A)-spaces.

Proof. In both cases, for each x € S(X), the set of all x* e S(X*)\&(x)
such that § || x || < x*(x) is finite.

Remark. The condition of Lemma 2.2 is not necessary in general for
(A)-spaces. This can be easily verified by considering the (A)-space /; and
noting that

sup{x*(x): x* € S(X*N\(x)} = 1

for every x € S(/;) which has infinitely many nonzero components.
We recall the following definition. For any pair of points v,, x in X, we
define an open cone

Ky, x) = {yeX: x*(y — vy < 0forevery x* e &(vy, — x)}.

The space X is called strongly nonlunar [1] if, for each uv,e S(X)
and u € K(v,,0), there exists an xe X such that u < K(y,, x) and
ve & K(vg , X) N S(X). (Actually, in [1] the point x was supposed to lie in
B(0, 1). However, it is easy to show that this definition is equivalent to the
original one.)

THEOREM 2.4. Every (A)-space is strongly nonlunar.

Proof. Let X be an (A)-space, v,€ S(X), and we K(v,,0), ie.,
sup{x*(u): x* € &(vy)} = 1 — & for some 8§ > 0. Let

W= ]x*eé(X*):1— g < x*(vy), x* () < 1 — g— .

Then W is g-open and WD &(vy). Choose y € X such that §(y) C W and
sup{x*(@y): x* e E(XN\E(¥)} =1 — €
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for some € > 0. Setting x == v, — y, we see that W D & (v, — x) and
sup{x*(vy): x* e S(X*)\E(ry — x)} = 1 — e.

If x* e &(vy — x), then x* € W and
3

XMu — vy) = xF(u) — x*F(ry) << 1 — 5 (1 — §) = 0.

Thus u € K(vy , x). Now suppose v € B(v,, €) N K(vy , x). If x* e &, — x),
X*(0) < x*(vy) < 1. If x* € 6(X*)\E (v, — x), then

XH) = XM 0 — vg) + x* (o) <v— v -1 —e<1L

Thus |[v]| <<1. We have shown that B(y,, €) N K(vy, x) C B(0, 1), ie.,
vy ¢ K(vy , x) N S(X). This completes the proof.

Let VC X. A point vye V is called a lunar point of V if x € P, (v,) and
Ky, x) NV #= o imply v, € K(vy, X) N V. Vis called a moon [1]if each of
its points are lunar. V is called a sun [10] if, for each v,€ V, x € P, (vy)
implies v, + A(x — v,) € P (v,) for every A = 0.

V is called a Kolmogorov set 5] if, for each vy € ¥V, x € P3'(v,) implies

min{x*(v — vy): x* € &(x — vy)} <0

for everyve V.
It is obvious that every sun is a moon. Further, we have:

THEOREM 2.5. Let V C X. The following are equivalent:

(1) Visasun.

(2) Vis a Kolmogorov set.

(3) For eachvye V, K(vy,X) NV = @& for every x € P} (vy).

The equivalence of (1) and (2) was first given in [5], while the equivalence
of (1) and (3) (as well as an alternate proof of the equivalence of (1) and (2))
was given in [1]. From the results of [1], we cite the following:

(a) if X is strongly nonlunar, then a set in X Is a sun if and only if it is
4 moon;

(b) the space Cy(T), T locally compact Hausdorff, is strongly nonlunar;

(c) the space L(S, 2, w), (S, 2, n) a o-finite measure space, is strongly
nonlunar if and only if (S, 2, u) is purely atomic.

The converse of (a) is still an open question, i.e., if every moon in X'is a sun,
must X be strongly nonlunar ? Relative to this problem we can prove the
following:
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THEOREM 2.6. Let X be a normed linear space such that every moon is a sun.
Then each point of S(X) is not a lunar point.

Proof. 1f some v, € S(X) were a lunar point, then v, € K(v, , x) N S(X) for
every x € Pgly,(vy) N B0, 1). Let ¥V = [X\B(X)] U {vp}. V is obviously not
a sun. We will show V' is a moon. For this it suffices to check only the point
v, € V (since every other v € Vis interior to V'sov = P,*v) and K(v, v) = o).
Let x € PyY(v,), x # v, . Then x € B(0, 1) and so V, € K(v, , x) N S(X). Thus
for each ¢ > 0 there exists v, € K(v,, x) N S(X) such that | v, — v. || < €/2.
Since K(v,, x) is open, there exists u. € K(vg, x) and |[u.|| > 1 such that
lu, — v. |l < ¢/2. Thenu. e Vand || u, — v, || << €50 vy € K(v,, x) N V. Thus
V is a moon.

Let #[0, 1] denote the space of all polynomials on [0, 1] endowed with the
supremum norm.

COROLLARY 2.7. In 2[0, 1], there is a moon which is not a sun.

Proof. Let X = Z[0, 1]. It suffices to show that the function v,(¢) =
—1 4 2t is a lunar point of S(X). Let x € B(0, 1). It follows that v, — x is a
nonconstant polynomial. Using the well-known fact that £(X*) consists of
(plus and minus) all point evaluations, we see that

K(vy, x) = {v e X2 o(t) < 0y(t) if 0y(t) — x(1) = [lvg — x|,
v(t) = vy(t) if vo(t) — x(t) = —[[vg — x][}.

Given any € > 0, we can “perturb” v, by an amount less that ¢/2 at each
point to obtain a continuous function &, such that §y(¢) < v(¢) for all
(finitely many) ¢ such that vy(t) — x(¢) = || vy — x|, To(t) > vy(t) for every ¢

such that vy(¢) — x(t) = —||v, — x|, and || %, || = 1. By a result of Wolibner
[16], we can choose a polynomial v such that ||v — ;1] << €/2, v(t) = 3,(¢)
for all ¢ such that | vy(¢) — x(¢)| = ||vy — x|, and | v| = 1. Thus|v — v,| < €

and v € K(vy , x) N S(X). Hence v, € K(v, , x) N S(X) and v, is a lunar point
of S(X).

Remark. The same argument as in the corollary shows that, in the space
of analytic functions on [0, 1], there is a moon which is not a sun. These
results should be compared with the fact that in C[0, 1] every moon is a sun.

Now we prove:

THEOREM 2.8. Let V C X. Consider the following statements:
(1) Visasun.
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(2) For each x € X, every local minimum of the function
D) =1 x—v
on V is a global minimum.

(3) Vs a moon.

Then (1) = (2) = (3). Hence in a MS-space, all three statements are equivalent.

Proof. (1) = (2): Let x€ X and let v, be a local minimum for @, , ie.,
there exists € > Osuch that| x — ¢, |l << || x — v/ foreveryve V N By, , €).
If v, is not a global minimum for @, , there exists some v € V' such that
lx —v] <<l'x —uv,ll. Thusve B(x,'| x — v, ) C K(vg, X) 50 K(vg, X) NV £ &,
Let x; = vy -+~ AMx — 1) for some 0 << A < €/2'] x — v,|l. Then x; € P(vy)
and K(v, , x;) = K(v,, x). Since V' is a sun, K(v,, x;) "V = @, which is a
contradiction.

(2) = (3): If V is not a moon, there exists v, € V' and x € P;(y,) with
K(vy,x) NV % @ such that v, ¢ (Kr,, x) N V i.e., there exists € > 0 such
that

B(v,, €) N K(vy, x) C X\V.

Letue K(vy, x) N V. Then, for some A > 0, u s B(vy, + AMx — 1), A x — vy |).
Setting x; = vy + A(x — v,) we get that we B(xy, || x; — vg]), K(vy, xy) =
K(v, , x), and

B(vy, ) 0 B(xy, |l x; — vg DC XV,

i.e., x; has v, as a local best approximation in V. But| x; —u | < | x; — vy |
80 v, is not a global best approximation to x, .

Remark. In general, none of the implications of Theorem 2.8 is reversible.
To see that (2) = (1) is not true, we need only consider the set V" which is the
complement of the open unit ball in the Euclidean plane. V' is obviously not
a sun but it is easy to verify that the functions @, have only global minima.

To see that (3) = (2) is generally false, let X be the Euclidean plane and let

V={&n): 18+ =15

This set is readily seen to be a moon, but the point x = (0, —%) has (0, 1) as
a local best approximation in ¥ which is not a global best approximation.

For the remainder of this section, we investigate the connection between
suns and moons with certain continuity properties of the metric projection.
We consider a more general concept than the usual concept of lower semi-
continuity.
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DeriniTION.  Let V' C X and x, € X. We say that P, is outer radially lower
continuous (abbreviated ORL-continuous) at x, if, for each v, € Py(x,) and
each open set W such that Py(x,) N W # @, there exists a neighborhood U
of x, such that P,(x) " W = @ forevery x e U N {1y + Alxg — vy): A = 1},
Py is called ORL-continuous if it is ORL-continuous at each point of X.
(Note that P is obviously ORL-continuous at each point of V)

LemMa 2.9. Let VCX and x,c€X. The following statements are
equivalent:

(1) Py is ORL-continuous at x, .

(2) For each v, , v, in Py(x,) and each € > 0, there exists 8§ > 0 such that
Py(x)N B(vy,€) # o forall x in{vy + Mxy — vp): 1 <A < 148}

(3) Foreachuv,, vyin Py(x,) and every sequence x,, in{v, + Mxo—vo): A = 1}
with x, — X, , there exists v, € P,(x,) such that v, — v, .

Proof. (1) = (2) is clear.

(2) = (3): Let v, , v; in Py(x,) and x, = vy + A(xy — ) with A, > 1 and
A, —1 (ie., x, — xy). For € = 1 there exists §; > 0 such that P,(x) N
B(vy, 1) # o forevery xe ¥V, , where Vs = {vy -+ A(xg — 0g): | <A <1+ 8}
Choose n, such that x,, € V(;2 foreveryn > ny . Choose y, € PV(xnz) N B, , 1).
For € = £ there exists a 6,, 0 << 8, < 8, , such that P,(x) " B(v,,3) # @
for every x € Vs, - Let n, > n, be such that x, € V‘;2 for every n = n, and
choose y, € PV(xnz) N B(v, , ). Continuing in this fashion, we obtain a
sequence of integers (), a decreasing sequence of positive numbers (5,),
and a sequence (y;) such that §, — 0, x,€ Vs, for every n = n;, and
Y& € Py(xn) N B(vy , 1/k). We define a sequence (v,) by taking v, C P(x,) for
n=l..,n —1, v, =y, for every k, and v, € Py(x,) N B(v,, 1/k) for
ny << n << My, . Then v, € Pp(x,) for every n and v, — v, .

(3) = (1): Suppose (3) holds but (1) fails. Then there exists v, € Py(x,) and
an open set W with P,(xg) N W = @ such that for every neighborhood U
of x, there exists an x in U N {p, + Alxg — vy): A > 1} such that
Py(xyn W = . Choose vy € Py(x,) N W. Then for every n there exists
X, == vy + Ay(xy — vy) with 1 <C A, << 1/nsuch that Py(x,) " W = @.Then
X, = X, , but, if v, € Py(x,), then v, ¢ W so v, + v .

THEOREM 2.10. If V is a sun, then P, is ORL-continuous.

Proof. Let x,€ X, vy, vy in Py(x,), and € > 0. It suffices to show
that if x = vy + A(xy — vg), A > 1, then Pu{x) N B, €) #* .
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Now 1y € Py(x) since V is a sun, and

Ix — ol < KD — Dlwy — x)] = | xy — 0y ]
O Dl -l 5ol

= A Xy — vyl =llx — gl <llx —uo

implies || x — v, || = || x — vy |: and v, € Py(x). This completes the proof.

THEOREM 2.11. Let V C X. If P, is ORL-continuous, then “local best
approximations are global,” i.e., statement (2) of Theorem 2.8 holds.

Proof. I not, there exists x, € X, v, V,and € => Osuchthat|| x, — vyl <
|| xo — v for every v e B(vy, €) NV, but || x, — vy || = dist(x,, V). Let x; be
the last point on the line segment [v,, x,] which has v, as a best (global)
approximation in V. Thus dist(x, V) < | x — v, || for every xe(x;, x,].
Choose & >0 such that Pu(x) N B(v,,€) #* o for every xe Vy=
{X) + AMxy —vg): | <A<t 1+381Ifx,eVsandve Py(x,) N B(y,, €), then
%y — vl <[ xy — vyl and so

X0 —voll = xg — xaf +lxn —voll =1 X0 — X3 [l +1oxy — 0l =1 x — v,

which contradicts the fact that v, is a local best approximation to x, .

By combining Theorems 2.8, 2.10, and 2.11 we obtain the theorem stated
in the introduction. In particular, we have:

THEOREM 2.12. Let X be MS-space. A subset of X is a sun if and only if its
metric projection is ORL-continuous.

3. THE SPACE Cy(T, X)

Let T be a locally compact Hausdorff space and X a (real) normed linear
space. We denote by C(7, X) the space of all continuous functions z: 7 — X
which vanish at infinity, and endowed with the supremum norm:

[[z| = sup |l z(t)lix .
teT

Thus z e Cy(T, X) if and only if z is a continuous X-valued function on 7
such that the set {tre T:'| z(t)|ly = €} is compact for every e > 0. With the
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pointwise linear operations, Cy(7, X) is a normed linear space. Whenever it is
necessary to distinguish between the norms in Co(T, X) and X, we denote the
latter by || - Iy . We often write Co(T) for Ci(T, R), when R is the set of real
numbers.

For a given z € Cy(T, X), its critical point set is defined by

critz = {te T: | z(t)llx = | 2 [}}-

A space X is called an (A¢)-space if it is an (A)-space and &'(x) is weak *-closed
for every nonzero x in X. (The latter condition is always satisfied, in particular,
when £(X*) is weak*-closed.) The main result of this section is:

TueorREM 3.1. Let X be an (Ac)-space. Then C(T, X) is an (A)-space.

CoOROLLARY 3.2. If X is a finite-dimensional polyhedral space, then Cy(T, X)
is an (A)-space. In particular, C(T) is an (A)-space.

The proof of Theorem 3.1 depends on a number of lemmas which are of
independent interest. If x* € X* and 7 € T, we denote by z* = x*(:(?)) the
element of C(T, X)* defined by z*(z) = x*(z(¢)) for every z € Cy(T, X). Our
first lemma characterizes the extreme points of the unit ball in Cy(7, X)* and
was proved in collaboration with P. D. Morris. It generalizes a result of
Singer [13], who proved it in the case in which 7 is compact and X a Banach
space. Our proof, as distinct from his, is independent of the representation of
the elements of the dual of Cy(7, X).

LemMma 3.3. Let X be a (real or complex) normed linear space and
Z = C|(T, X). Then
E(Z*) = {x*((t)): x* e E(X*), te T}
Proof. Let A = {x*(-(1)): x* € B(X*),te T}.
CrLamM. A is a weak*-closed (hence compact) subset of B(Z*). For let
z,* = x,*(-(t,)) be a net in A which converges weak* to some z* € B(Z*).

Case 1. (z,) has a cluster point ¢ € 7. Then there is a subnet (¢;) such that
tg — t. Now (z5*) also converges weak * to z*. By passing to a further subnet
of (x;*) if necessary, we may assume that {x,;*) converges weak* to some
x* € B(X*). Thus, for every z € Z,

z¥(2) = lim z*(z) = lim x*(2(t5)) = x*(2(1))

and hence z* = x*(-(¢)) € 4.
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Case 2. (t,)hasno cluster point. If z € Z and € = 0, choose a compact set
T, C T'such that || z(z)|| < e for every t € T\ T, . Since (z,) has no cluster point,
there exists an index oy such that 1, € T\T, for every o« == «, . Hence, for every

o=,
‘Zoc*(z)1 o lxa*(z(toc))[ \] Z(tm)iv <l €

implies that z,* converges weak* to 0 € 4.

CramM. The weak*-closed convex hull of A4, co(A4), is equal to B(Z*).
For, if not, then by a well-known separation theorem [9, p. 417] there would
exist z € Z, and z,* € B(Z*)\co(4), such that

Re z,*(z) > sup{Re z*(z): z* € co(4)}
= sup{Re x*(z(t)): x* € B(X*), 1t T}
= |z,

which is absurd.

CLAIM. &(Z%) C{x*(-(1)): x* e &(X*),te T}

Let E = {x*(-(t)): x* e £(X*), t € T}. By a theorem of Milman (cf., e.g.,
[9, p, 440]), £(Z*) C A. If there is some z* € S(Z*)\E, then z* = x*((1))
for some x* € B(X*)\&(X*)and some f € T. Hence there exist x; *, x,* in B(X'*),
x* #£ xp* such that x* = (¢ * -+ x,*) and s0 z* = x *(:(1)) + x*(-(1))],
which contradicts z* € &(Z*). Thus £(Z*) C E.

To complete the proof of Lemma 3.3, we must show that £ C &(Z*). Let
xXp* € 6(X*), t, € T, and suppose

X ¥ (1)) = =z * — z,*] for some z;* € B(Z*).

let zeZ, |z|| <1, and suppose x,*(z(#,)) = 0. We will show that
z2,%(z) = z,*(z) = 0. Fix an arbitrary € > 0. Let T, = {£: | z(¢)|i > €} and
Y = {t:1] z(t)| > €/2}. Then U is a neighborhood of the compact set T, .
By Urysohn’s lemma, we choose f e Cy(T)suchthat0 < f < 1,f=1onT,,
and f = 0off U. Setz; = zf. Then z; € Z, || ;|| < 1, and, for every 1 € T,

Iz() — 2! = [1 = fO1 1zl <e,

ie., llz— z; | < e. Again by Urysohn’s lemma, we choose g € Cy(T), with
0 < g <1, such that g(f,) = 1 and g = 0 off the set {r:] z(¢){| < €/2}.
Choose x € S(X) such that Re x3*(x) > 1 — (¢/4) and set z, = xg . Then
z,€Z, || 25|l = 1, and z,(t,) = x so

I - § < Rex,"(z(0) = 3 [Re 2*(z) + Re 2]
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which implies
(1) min{Re z,%(z,), Re z,%(z,)} > 1 — (¢/2).

Also, || z; + z,|| = 1 implies that

I — 2 < Re xp™(za(fp)) = Re x¢*[z1(t) + 25(2)]

= % [Re z%(z; -+ z) + Re z,%(z; + z,)],
from which it follows that
) min{Re z;¥(z; + z,), Re z,%(z; + z2)} > 1 — (¢/2).
Combining (1) and (2) we get
[Re z,%(z))] < €/2 for i=1,2.
A routine computation shows that
|Im z%(zp)] < Ve,  |Imz*(z + 2,)| < Ve,
fori = 1, 2. Thus
| Tm z%(z)] < | Tm 2,5z, + 25)] + [ Im 2,%(zp)| <2 Ve
for i =1, 2. Hence, fori =1, 2,
| 242)| < 124G — 2| + | 2%
<lz =zl + V(4 + 4e < e + V(D) 1 4

Since € was arbitrary, this shows that z,*(z) = z,%(z) = 0. We have shown
that | z|| < 1 and x*(z(4,)) = O imply z,*(z) = z,*(z) = 0. It follows that
2% = a;xo*(+(¢2)) for some scalars o; (i = 1, 2). Since xp*(+(¢,)) = 4(z;* + z,%),
o = ay = 1 and xy*(-(#,)) € §(Z*). This completes the proof.

It is well known [12] that, if Y is a subspace of the normed linear space Z,
then &(Y*) C {z* |y: z* € £(Z*)}. Thus

COROLLARY 3.4. Let Y be a subspace of C(T, X). Then
E(Y*H) C{x*(-(1)): x* e &(X*), te T}

We state the following simple result for reference purposes since it is used
several times:



258 BROSOWSKI AND DEUTSCH

LEMMA 3.5. Let X and Z be as in Lemma 3.3. Then for each compact set
To C T, each neighborhood U of T, , and each x € X, there exists z = Z such
thatz = xonTy,z =00ff U, and| z|l = x|.

Proof. By Urysohn’s lemma there exists f'e Co(T') such that 0 = /=0 [,
f=1onT,,and /= 0 off U. The element z = xf works.

LemMa 3.6. Let X and Z be as in Lemma 3.3. Then 6(Z*) is homeomorphic
to the product T x &(X*) (relative to the o-topologies on §(Z*) and §(X*)).

Proof. By Lemma 3.3,
E(Z*) = {x*((1)): x* € E(X*),te T}
We define F: T x 6(X*) — &§(Z*) by
F(1, x9)] = x*((2)).

F is clearly onto and continuous. Suppose x,*(:(¢)) = x,*(:(¢)). If t; = ¢,
then taking an x € X\X7%0), an application of Lemma 3.5 yields a ze Z
such that z(z)) = x and z(#,) = 0. But this implies the contradiction
x,¥(z(1)) # x:*(z(1,)). Hence t; = ¢, . A similar argument shows x;* == x,*.
Thus F is one-to-one. To show F1is continuous, let x,*(:(%,)) — x*(-(¢)). We
must verify that x,* — x*and 7,* — ¢. If 1,* > ¢, there exists a neighborhood
U of ¢t and a subnet (75) such that t; ¢ U for every 8. By Lemma 3.5 there is
z € Z such that z(¢) = x € X'\x*40) and z = 0 off U. Then

0 # x*(x) == x*z(t)) = lim xz*(z(13)) = O,

which is absurd. Thus ¢, — 7. Now let x € X be arbitrary. Choose a neigh-
borhood U of ¢ such that U is compact, and choose «, such that 7, € U for
every o > o, . By Lemma 3.5 there exists z € Z such that z = x on U. Then,

for every o = o,
X 5(X) = x,*(2(2) — x*(z2(1) = x*(x).

Hence x,* — x* and the proof is complete.

DeriNITION. Let X and Y be topological spaces. A set-valued map
Y. X — 2¥ (the set of all closed subsets of Y) is said to be upper semi-
continuous (abbreviated u.s.c.) at x, if for each neighborhood W of ¥(x,) there
exists a neighborhood U of x, such that ¥(x) C W for every x C U. ¥ is called
u.s.c. if it is u.s.c. at each point.

LEMMA 3.7. Let X be an (A)-space. Then (relative to the o-topology on
&(X*)) the peak set mapping x — &(x) is u.s.c.
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Proof. Let x,€ X and W be a o-open neighborhood of &(x,). If x, = 0,
the result is trivially true. If x, 5 0, there is a y € X such that £(y) C W and

sup{x*(xe): x* € E(XNE(¥)} = [ x| — 3
for some & > 0. Let
U={xeX:||x— x| < 8/2}.
If x € U and x* € £(X*)\6(y), we have
X)) = X*(x — x) + x*(x,)
Shx —xoll +lx ! —06 <lxell — 82 <|xl,
so x* ¢ &(x). Thus &(x) C &(y) C W for each x e U.
Proof of Theorem 3.1. Let z € S(Z) and let W be a s-open neighborhood
of £(z). We have to show the existence of a y € Z such that WD &(y) and
sup{z*(z): z* e S(Z*)\E(y)} < 1.

By Lemma 3.6, we may assume that

W= \J F(4; x Uy D &),

iel

where F is the homeomorphism constructed in Lemma 3.6, 7 is some index set,
and A4, and U; are open in T and &(X*), respectively. By assumption, &'(z(¢))
is compact whenever z(¢) % 0. Using Lemma 3.7, we deduce that the map
t — &(z(1)), and hence also the map ¢t — {¢} X &(z(¢)), is u.s.c. Since crit z is
compact, it follows by a theorem of Michael [11] that

U [ x &Eo)l,

tecritz
and hence

6@ =F( U [ x 6c)),

tecritz
is compact. Thus there exist sets 4, X U, ,..., 4, X U, such that
ECYFA4, x U)Cw.
2=1
For each ¢ € crit z, define
alt) ={ie N: A; x U; N {1} x (z(t)) = o} #* &,
o) = ) U;D EE0),

i€a(t)

640/10(3-5
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and
Aty = () A; Dt}

iealt)

Note that A(r) is open and

E)C | Fle} = ] C Y FIA@R) » «)]C W.
tecritz tecritz
Now ¢t -> &(z(1)) is u.s.c. and so, for each recrit z, there exists a neigh-
borhood B(t) of ¢ such that B(t) C A(t) and &(z(t")) C «(t) for every ¢’ € B(t).
Thus
E(z)C Y FIB@) x o(1)] C W.

tecritz

Let C = U eeritz B(t). Then, for each ¢ € C, we see that

FI{t'} x &N C ) FIBU) % o(t)] C W.

tecritz

We now choose an open set M such that
critzCMCMC |J B,
tecritz
M is a compact G, and
M CH{e: [ (O > 3.

Next we extend the definition of o(f) and B(¢) to all of M. Since M is compact,
there exist 7, ...., f, in crit z such that M C |y B, , where B, — B(t,). For
each 7 € M'crit z, define

B(t) = (Y{By: 1< B}
and

at) = (J{at)): t € By}

Note that B(7) is a neighborhood of ¢ and «(z) is open.
Let r € M\crit z. Then, for each ¢’ € B(t), &(z(t")) C aft). Also,

F{t} x é@z(1)] C | FIB() x «DH] C W.
ieM
To verify the relation gz FIB(I) X «7)] C W, it suffices to show
F[B(I) > «()] C W for every i € M\crit z. Now

B % offy = (Y{Br:7€ B} x (Y{dtp): T € By}

= U 3(\{Bj:ze3,.} x a(tk)gc U B x alty)

{k:TeBy} {k:Te By}
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implies
F[B({) x «H]C | F[B. X o)} C W.
(k:feBy}
Since X has the (A)-property, for each 1 € M there exists x, € X, |l x, | = 1,

such that
&(x) C 6(x,) C at)

and
sup{x*(z(1)): x* € E(X*NE(x,)} = [l 2| — €,
for some €, > 0. By the continuity of z and the u.s.c. of ¢ — &(z(z)), for each
t € M there is a neighborhood D(t) of ¢ such that D(¢) C B(¢) and, for each
t' e D(1),
EEENCE(x), and | z(t) — z()]| < €2,

Since M is compact and (J, 57 D(t) D M there exist s, ,..., 5, in M such that
MC\, , D,, where D, = D(S,).

Since M is a compact G, , we can choose a “partition of unity” p; ..., pp

in Cy(T) as follows: p; = 0 for every i, p;, = 0 on M\D;, ZZ” p; = 1 on M,
and 3} p; < 1 off M. We set

y(@) =3 pit) x;, where x; = x,,.
1
For each r € M, put
b(t)y = {ie N: p(t) # 0}.
We now show that

Sy = ) 6(x) for every te M.

ieblt)

First note that (Ve 6(x;) = @ since &(x;) D &(z(¢)) for i< b(t). Now
x* € (Vientn €(x,) implies

FOO) =3 @) ) = Y plt) = 1 = |y

ieb(t)

Thus x* € £(y(t)). Conversely, if x* € &(y(¢)), then for i, € b(¢)
1= y@) = x*(p@)) = Y pt) x*(x)) < ps(1) x*(x3) + 1 — py (1),

which implies that 1 < x*(x,-u) and so x* e g(xio).
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We have | p{t) == 'y, —= | foreveryre M and crity D M. But ¥ p; < 1
off M so| ¥(1)" < | off M and crit y = M. For every 1 M.

() 6(x) = N T () (s,

‘eb(l) neb(t)
SO

{t} >3 E@)C () Dy x () als) C Dy 0 ofsy) C B(s) < aulsy)

i€t )
for every i € b(t). Hence
Fl{t} > ()] CFB(s;) X als)] C W.
But
&(y) = U Fl{t} < 8(y)]
teM
and so £(y) C W.
It remains to show that
sup{z¥(z): z* e E(Z*NE(p)} < 1,
Le.,
sup{x*(z(1)): x*(:(1)) € E(Z*N\éE(y)} < 1.
Now x*(-(2)) € £(Z*)\6 () if and_only if x*e&(X*)andeithert ¢ crity = M
or x*¢ &(y(1)), tecrity. If re M and x* ¢ &(y(1)), then x* ¢ &(x;) for some
i€ b(t) implies 1 € D, and
x*(z(1)) = x¥(z(t) — 2(t)) + x*(2(1)
< &, 2@ — e, = z()l] — dey,
<1 — g,
where €, = F min, <<, €, . Also,
sup{ll z(Dll: g M} = 1 — ¢
for some ¢; > 0. Taking ¢ = min{e,, ¢}, we conclude
sup{x*(z(1)): x*(() e EZ*NE(y)} <1 — e < L,

and the proof is complete.
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4. PRODUCT SPACES

Let (X;), i € I, be a collection of real normed linear spaces. By the /.-product
of the X;, denoted (I T.e; X:);_ , we mean the set of all functions x on I such
that x(i) € X; for each i (i.e., x € [;e; X;) and sup;; || x(1)|| << co. Defining,
the linear operations pointwise and a norm by || x || = supe; | (DI, (I Lier X,
is 2 normed linear space. By the cp-product of the X, , denoted ([Tie; Xo)e, »
we mean the subspace of ([ 1., Xo),, consisting of those x such that the set
{ie I || x())|l > €} is finite for every € > 0. Similarly, the /;-product of the X,
denoted (] [ier X3)s, » 18 the set of all functions x in [ ];o; X, such that the norm
| x| = Zier | x(@)] is finite.

It is well known (cf. [8]) that ([T X;*), (respectively, (I X; *),w) is
isometric to ([T, X.)., (respectively, (IT; X,);¥) via the mapping (x*(i))ie; — x*
defined by

x*(x) =Y, x*(i) x()

iel

for every x in the product space. Also, it can be readily verified that if
X =TT Xi)t1 (respectively, X = (T, Xi)lw), then

E(X) = {x e X: x(a) € 8(X,) for some o and x(i) = 0 if i # o}
(respectively, £(X) = {x € X: x(i) € £(X;) for every i}).
We first consider the ¢g-product X = (I]; X,),, . For any x € X, we define

critx = {iel: || x()|| = || x|}

THEOREM 4.1. (I[T; Xi)., is an (A)-space if and only if each X; is an
(A)-space.

The essential part of the proof is contained in

LemMmA 4.2. Let X = (ITies X,)e, » and x € X\{0}. Then

@) E(x) = {x* e X: x*(j)e &(x(})) for some jecritx and x*(@) =0 if
i}

(b) If W,is c-openin E(X,*) and W = Tlie; W, where W, = {0} if i # a,
then W is a-open in £(X*).

(¢) If Wis g-openin &(X*) and W D &(x), then, for each j € crit x, the set
W; = {x*(j): x* e W} E(X;%)

is a-open in E(X;*) and W; D &(x(j)).
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Proof. The proof of (a) is routine and omitted. For (b), let x,* e W, .
Then there exist x,; ,..., X,, in X, and ¢ > 0 such that the set

Ua = ﬂ {ya* € g)(Xoc*): iyu*(xuk - xm*(xak)l < 6}
k=1

is contained in W, . We can assume x,*(x,;) =% 0 for some k. Then, fore > 0
small enough, y,* € U, implies y,*(x,;) # 0 for some k. Define x, € X by
putting x,(a) = x,, and x,(i) = 0 if i = «. Let x* ¢ X* be defined by
x*(a) = x,* and x*(i) = 0 if i # «. Then the o-open neighborhood of x*

U= N {y*edX*): |y xp) — x¥x)| < ¢}
k=1
has the property that, if y* € U, then y*(a) € U, C W, and y*(i) = 0if { 5= o
Thus U C W so W is o-open.
For the proof of (c), we first observe that W; O &(x(j)) for every j e crit x
is clear. Let recritx and x;* € W;. Then there exists x* € W such that
x*(j) = x;* and x*(i) = 0 if i 5= j. Choose a o-open set

U= () {y*e&(X*): | y*(x) — x*(x)| < ¢}
k=1
so that WD U. Then we see that
W; O () 1v*() € EXF): | y*()) xil(j) — x*(G) x()) < €}
k=1
and the right side is a s-open neighborhood of x*i(j). Thus W; is c-open.
Proof of Theorem 4.1.  Let X = ([T X;)., . Suppose that X is an (A)-space.
Fix an arbitrary index «, let x, € S(X,), and let W, be a o-open set in £(X,*)
such that W, D &(x,). Define x € X by setting x(i) = 0if i # « and x(«) = x, .
Let W =[], W, where W, = {0} if i #* «. Then W is o-open in &(X*) by
part (b) of Lemma 4.2 and &'(x) C W. By the (A)-property, there existsa y € X
such that &(y) C W and
sup{x*(x): x* € S(XNE(y); < 1.
It follows that crit y = crit x = «, &(y,) C W, , and
sup{x*(e) x(x): x*(o) € E(X,NE(¥(o))}
< sup{x*(x): either i € crit y and x*(i) € S(X;)\E( (i)
or i ¢ crit y and x*(i) € &(X,;*)}
= sup{x*(x): x* € S(XN\E(»)} < 1.
Thus X, is an (A)-space.
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Now suppose each X, is an (A)-space. Let xeS(X) and W be
a c-open set with WD &(x). By Lemma 4.2(c), for each jecrit x, the set
W, = {x*(j): x* € W} N &(X;*) is o-open in &(X;*) and W; D &(x(j)). By
the (A)-property, there exists for each j € crit x an element y; € S(X)) such that
&(y) C W;and

sup{x*(/) x(j): x*() € EX;NE(y)} = 1 — ¢

for some ¢; > 0. Choose ¢, > 0 such that critx = {j: | x(H)l] > 1 — €}-
Define y in X by y(j) =y, if jecritx and y(i) = 0 if iécritx. Then
crity = critx, £(y) C W, and

sup{x*(x): x* € £(X)\E(»)}
= sup{x*(x): either i € crit y and x*(i) € E(X;*N\E(y(i))
or i ¢ crit y and x*() € &(X;%)}

<1 — min {e, ¢} < 1.

jecrite

Thus X is an (A)-space and the proof is complete.

We next consider /;-products of certain (A)-spaces.

THEOREM 4.3.  Let (X;);c; be a collection of (A)-spaces such that £(X;*) is
weak * closed for each i. Then (I]; X, i),1 is an (A)-space.

Proof. Let X = (I] Xy),, . We first note the natural identification of &(X*)
with [T;.; €(X;*). In fact, taking the o-topologies on &(X*) and &(X;*) and
the product topology on []; &£(X;*), this identification is easily seen to be a
homeomorphism (using the fact that convergence in the product topology is
equivalent to coordinatewise convergence). In particular, &(X*) is weak*-
closed (hence o-compact). Now let x € S(X) and let W be a o-open set in
&(X*) which contains (x). By the o-compactness of &(x), it follows that there
exist a finite number of o-open sets of the type

V}C = H Uz (k - 1,..., n),

el

where U, = &(X,*) for all but finitely many indices i(k, 1),..., i(k, n,) and U,
is o-open in &(X;¥) if i = ik, v) (v = 1,..., i), such that

é”(x)CO V,CW.

k=1
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Define 1, = {i(k, v): k = 1,..,n;v = 1,..., n,} and supp x = {i € I x(i) + O}.
for any j € supp x we have

60/ C s U o

where pr; denotes the projection onto the jth coordinate space. Since X; is an
(A)-space, there is y; € X; such that
603 Cor (U 74
L=1
and
sup{x*(j) x(j): x*(j) € S(X;NE(y)) = | (N — &
for some €; > 0. Next we define the element y € X by
N Vs if iesuppx Ny,
() = {0, otherwise.
Then

s Cyrcw.

Also, if x*e&(X*NE(y), then x*(j)¢E(y(j)) for some jesuppy so
x*(j) ¢ &(y(j)) for some j € supp x. It follows that

x*x) = Y x*O) x(@) < Y @+ i x(O — €
>y
=1—¢<1—e¢
where € = min{e;: j € supp x N I;}. Hence
sup{x*(x): x* e S(X*)N\E ()} <1 — e < 1.
and the proof is complete.

Taking X, to be the set of real numbers for each i, we deduce
CoroLLARY 4.4. [(S) is an (A)-space for any set S.

COROLLARY 4.5. Let L, = LS, 2, n), where (S,2, n) is a o-finite
measure space. Then L, is an (A)-space if and only if (S, 2, u) is purely atomic.

Proof. If L,is an (A)-space, then (by Theorem 2.4) L, is strongly nonlunar
s0, by Theorem 5.4 of [1], (S, 2, ) is purely atomic. Conversely, if (S, 2, p)
is purely atomic, then L, is of type L(T) for some set T, so the conclusion
follows from Corollary 4.4.
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